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Abstract Let S be a (multiplicative) commutative semigroup with 0. Associate to S
a (simple) graph G.S/ with vertices the nonzero zero-divisors of S, and two distinct
vertices x and y are adjacent if and only if xy D 0. In this survey article, we collect
some properties of the zero-divisor graph G.S/.
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1 Introduction

Let R be a commutative ring with 1 ¤ 0, and let Z.R/ be its set of zero-divisors.
Over the past several years, there has been considerable attention in the literature
to associating graphs with commutative rings (and other algebraic structures)
and studying the interplay between their corresponding ring-theoretic and graph-
theoretic properties; for recent survey articles, see [13, 17, 18, 29, 56, 58], and
[61]. For example, as in [11], the zero-divisor graph of R is the (simple) graph
� .R/ with vertices Z.R/ n f0g, and distinct vertices x and y are adjacent if and
only if xy D 0. This concept is due to Beck [23], who let all the elements of R
be vertices and was mainly interested in colorings (also see [7]). The zero-divisor
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graph of a commutative ring R has been studied extensively by many authors. For
other types of graphs associated to a commutative ring, see [2–4, 8–10, 16, 19–
21, 24, 43, 55, 57, 59, 63, 67], and [73].

The concept of zero-divisor graph of a commutative ring in the sense of
Anderson-Livingston as in [11] was extended to the zero-divisor graph of a
commutative semigroup by DeMeyer, McKenzie, and Schneider in [33]. Let S be
a (multiplicative) commutative semigroup with 0 (i.e., 0x D 0 for every x 2 S), and
let Z.S/ D f x 2 S j xy D 0 for some 0 ¤ y 2 S g be the set of zero-divisors of
S. As in [33], the zero-divisor graph of S is the (simple) graph G.S/ with vertices
Z.S/nf0g, the set of nonzero zero-divisors of S, and two distinct vertices x and y are
adjacent if and only if xy D 0. The zero-divisor graph of a commutative semigroup
with 0 has also been studied by many authors, for example, see [8, 9, 15, 30, 32–
38, 41, 44, 46, 49, 51–54, 68, 69, 71], and [74–81].

The purpose of this survey article is to collect some properties of the zero-divisor
graph of a commutative semigroup with 0. Our aim is to give the flavor of the
subject, but not be exhaustive. In Sect. 2, we give several examples of zero-divisor
graphs of semigroups. In Sect. 3, we give some properties of G.S/ and investigate
which graphs can be realized as G.S/ for some commutative semigroup S with 0. In
Sect. 4, we continue the investigation of which graphs can be realized as G.S/ and
are particularly interested in the number (up to isomorphism) of such semigroups
S. Finally, in Sect. 5, we briefly give some more results and references for further
reading. An extensive bibliography is included.

Throughout, G will be a simple graph with V.G/ its set of vertices, i.e., G is
undirected with no multiple edges or loops. We say that G is connected if there is a
path between any two distinct vertices of G. For vertices x and y of G, define d.x; y/
to be the length of a shortest path from x to y (d.x; x/ D 0 and d.x; y/ D1 if there is
no path). The diameter of G is diam.G/ D supfd.x; y/ j x and y are vertices of G g.
The girth of G, denoted by gr.G/, is the length of a shortest cycle in G (gr.G/ D1
if G contains no cycles).

A graph G is complete if any two distinct vertices of G are adjacent. The complete
graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal
number). A complete bipartite graph is a graph G which may be partitioned into
two disjoint nonempty vertex sets A and B such that two distinct vertices of G are
adjacent if and only if they are in distinct vertex sets. If one of the vertex sets is a
singleton, then we call G a star graph. We denote the complete bipartite graph by
Km;n, where jAj D m and jBj D n (again, we allow m and n to be infinite cardinals);
so a star graph is a K1;n.

Let H be a subgraph of a graph G. Then H is an induced subgraph of G if every
edge in G with endpoints in H is also an edge in H, and G is a refinement of H if
V.H/ D V.G/. For a vertex x of a graph G, let N.x/ be the set of vertices in G that
are adjacent to x and N.x/ D N.x/ [ fxg. A vertex x of G is called an end if there
is only one vertex adjacent to x (i.e., if jN.x/j D 1). The core of G is the largest
subgraph of G in which every edge is the edge of a cycle in G. Also, recall that a
component, say C, of a graph G is a connected induced subgraph of G such that
a � b is not an edge of G for every vertex a of C and every vertex b of G n C. It is
known that every graph is a union of disjoint components.
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Let S be a (multiplicative) commutative semigroup with 0. A ; ¤ I � S is an
ideal of S if xI � I for every x 2 S. A proper ideal I of S is a prime ideal if xy 2 I
for x; y 2 S implies x 2 I or y 2 I. An x 2 S has finite order if f xn j n � 1 g
is finite. Recall that S is nilpotent (resp., nil) if Sn D f0g for some integer n � 1

(resp., for every x 2 S; xn D 0 for some integer n D n.x/ � 1). Thus, a nilpotent
semigroup is a nil semigroup, and a finite nil semigroup is a nilpotent semigroup. If
every element of S is a zero-divisor (i.e., Z.S/ D S), then we call S a zero-divisor
semigroup. Note that we can usually assume that a commutative semigroup S with 0
is a zero-divisor semigroup since Z.S/ is an (prime) ideal of S and G.S/ D G.Z.S//.
Clearly, a nonzero nil semigroup, and hence a nonzero nilpotent semigroup, is a
zero-divisor semigroup.

A general reference for graph theory is [26], and a general reference for
semigroups is [42]. Other definitions will be given as needed.

2 Examples of Zero-Divisor Graphs

Let S be a (multiplicative) commutative semigroup with 0. Associate to S a (simple)
graph G.S/ with vertices the nonzero zero-divisors of S, and two distinct vertices x
and y are adjacent if and only if xy D 0. Note that G.S/ is the empty graph if and
only if S D f0g or Z.S/ D f0g (i.e., f0g is a prime semigroup ideal of S). To avoid
any trivialities, we will implicitly assume that G.S/ is not the empty graph.

In this section, we give several specific examples of “zero-divisor” graphs that
have appeared in the literature and show that they are all the zero-divisor graph
G.S/ for some commutative semigroup S with 0. This illustrates the power of this
unifying concept and explains why these “zero-divisor” graphs all share common
properties related to diameter and girth.

Example 2.1 Let R be a commutative ring with 1 ¤ 0.

1. The “usual” zero-divisor graph � .R/ defined in [11] has vertices Z.R/ n f0g, and
distinct vertices x and y are adjacent if and only if xy D 0. Thus, � .R/ D G.S/,
where S D R considered as a multiplicative semigroup.

2. Let I be an ideal of R. As in [63], the ideal-based zero-divisor graph of R with
respect to I is the (simple) graph �I.R/ with vertices f x 2 R n I j xy 2 I for some
y 2 R n I g, and distinct vertices x and y are adjacent if and only if xy 2 I. Thus,
�I.R/ D G.S/, where S D R=I is the Rees semigroup of (the multiplicative
semigroup) R with respect to I (i.e., the ideal I collapses to 0). In particular,
�f0g.R/ D � .R/.

3. Define an (congruence) equivalence relation � on R by x � y , annR.x/ D
annR.y/, and let RE D f Œx� j x 2 R g be the commutative monoid of (congruence)
equivalence classes under the induced multiplication Œx�Œy� D Œxy�. Note that
Œ0� D f0g and Œ1� D R n Z.R/; so Œx� � Z.R/� for every x 2 R n .Œ0� [ Œ1�/.
The compressed zero-divisor graph of R is the (simple) graph �E.R/ with
vertices RE n fŒ0�; Œ1�g, and distinct vertices Œx� and Œy� are adjacent if and only if
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Œx�Œy� D Œ0�, if and only if xy D 0. Thus, �E.R/ D G.RE/. This zero-divisor
graph was first defined (using different notation) in [57] and has been studied in
[8, 9, 29], and [67]. The semigroup analog has been studied in [35] and [38].

4. Let � be a multiplicative congruence relation on R (i.e., x � y ) xz � yz
for x; y; z 2 R). As in [10], the congruence-based zero-divisor graph of R with
respect to � is the (simple) graph ��.R/ with vertices Z.R=�/ n fŒ0��g, and
distinct vertices Œx�� and Œy�� are adjacent if and only if Œxy�� D Œ0��, if and
only if xy � 0. Thus, ��.R/ D G.R=�/, where R=� D f Œx�� j x 2 R g is
the commutative monoid of congruence classes under the induced multiplication
Œx��Œy�� D Œxy��. The congruence-based zero-divisor graph includes the three
above zero-divisor graphs as special cases.

5. Let S be the semigroup of ideals of R under the usual ideal multiplication. As in
[24], AG.R/ D G.S/ is called the annihilating-ideal graph of R (this zero-divisor
graph was first defined in [73]). Similarly, as in [32], define the annihilating-
ideal graph of a commutative semigroup S with 0 to be AG.S/ D G.T/, where
T is the semigroup of (semigroup) ideals of S under the usual multiplication of
(semigroup) ideals.

6. Let .S;^/ be a meet semilattice with least element 0. As in [60], the zero-divisor
graph of S is the (simple) graph � .S/ with vertices Z.S/ n f0g D f 0 ¤ x 2 S j
x ^ y D 0 for some 0 ¤ y 2 S g, and distinct vertices x and y are adjacent if and
only if x ^ y D 0. Recall that S becomes a commutative (Boolean) semigroup
S0 with 0 under the multiplication xy D x ^ y; so � .S/ D G.S0/. Similar zero-
divisor graphs have been defined for posets and lattices [see [39, 40, 46, 48, 53],
and Theorem 4.1(1)].

However, not all “zero-divisor” graphs can be realized as G.S/ for a suitable
commutative semigroup S with 0. For example, as in [19], the annihilator graph of a
commutative ring R with 1 ¤ 0 is the (simple) graph AG.R/with vertices Z.R/nf0g,
and two distinct vertices x and y are adjacent if and only if annR.x/[ annR.y/ ¤
annR.xy/. Then � .R/ is a subgraph of AG.R/, and may be a proper subgraph (e.g.,
� .Z8/ D K1;2, while AG.Z8/ D K3). Thus, AG.R/ need not be a G.S/. Similarly, as
in [1], one can also define the annihilator graph AG.S/ of a commutative semigroup
S with 0. The zero-divisor graph G.S/ is a subgraph of AG.S/.

As in [81], for a commutative semigroup S with 0, let G.S/ be the (simple) graph
with vertices Z.S/ n f0g, and distinct vertices x and y are adjacent if and only if
xSy D f0g. Then G.S/ is a subgraph of G.S/, and may be a proper subgraph (e.g., if
S D f0; 2; 4; 6g � Z8, then G.S/ D K1;2, while G.S/ D K3).

3 Some Properties of the Zero-Divisor Graph G.S/

In this section, we give some properties of the zero-divisor graph G.S/ of a
commutative semigroup S with 0 and are particularly interested in which graphs
can be realized as G.S/ for some commutative semigroup S with 0. We start with
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some basic properties of G.S/. Parts (1)–(3) of Theorem 3.1 were first proved for
� .R/ (cf. [11, 12, 31], and [57]).

Theorem 3.1 Let S be a commutative semigroup with 0.

1. ([33, Theorem 1.2]) G.S/ is connected with diam.G.S// 2 f0; 1; 2; 3g.
2. ([33, Theorem 1.3]) If G.S/ does not contain a cycle, then G.S/ is a connected

subgraph of two star graphs whose centers are connected by a single edge.
3. ([33, Theorem 1.5]) If G.S/ contains a cycle, then the core of G.S/ is a union

of triangles and squares, and any vertex not in the core of G.S/ is an end. In
particular, gr.G.S// 2 f3; 4;1g.

4. ([30, Theorem 1(4)]) For every pair x; y of distinct nonadjacent vertices of G.S/,
there is a vertex z of G.S/ with N.x/ [ N.y/ � N.z/.

Remark 3.2 (1) In Theorem 3.1(4), it is easily shown that N.x/[N.y/ ¨ N.z/ (for
any such z), and either case z 2 N.x/ [ N.y/ or z 62 N.x/ [ N.y/ may occur.
Moreover, we can always choose z D xy, but there may be other choices for z.

(2) In [53], a (simple) connected graph which satisfies condition (4) of Theorem 3.1
is called a compact graph. In [53, Theorem 3.1], it was shown that a simple
graph G is the zero-divisor graph of a poset if and only if G is a compact graph.

For small graphs, conditions (1), (3), and (4) of Theorem 3.1 actually characterize
zero-divisor graphs.

Theorem 3.3 ([30, Theorem 2]) Let G be a (simple) graph with jV.G/j � 5

satisfying conditions (1), (3), and (4) of Theorem 3.1. Then G Š G.S/ for some
commutative semigroup S with 0.

([30, Example 2]). In view of Theorem 3.3, Fig. 1 is a graph with six vertices
which satisfies conditions (1), (3), and (4) of Theorem 3.1, but G is not the zero-
divisor graph of any commutative semigroup with 0. (Also, see [35, Fig. 2, p. 3372].)

The next theorem gives several classes of graphs which can be realized as the
zero-divisor graph of a commutative semigroup with 0. As to be expected, many
more graphs can be realized as G.S/ for a commutative semigroup S with 0 than as

Fig. 1 A graph with six
vertices which satisfies
conditions (1), (3), and (4) of
Theorem 3.1, but G is not the
zero-divisor graph of any
commutative semigroup
with 0 x3

y3 y2

y1

x1

x2
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� .R/ for a commutative ring R with 1 ¤ 0 (cf. [11, 12, 64], and [65]). For example,
Kn and K1;n (for an integer n � 1) can be realized as a G.S/ for every n � 1, but can
be realized as a � .R/ if and only if nC 1 is a prime power [11, Theorem 2.10 and
p. 439].

Theorem 3.4 ([30, Theorem 3]) The following graphs are the zero-divisor graph
of some commutative semigroup with 0.

1. A complete graph or a complete graph together with an end.
2. A complete bipartite graph or a complete bipartite graph together with an end.
3. A refinement of a star graph.
4. A graph which has at least one end and diameter � 2.
5. ([33, Theorem 1.3(2)]) A graph which is the union of two star graphs whose

centers are connected by a single edge.

([30, Example 3]). By (3) and (5) of Theorem 3.4, the refinement of a star graph
and the union of two star graphs whose centers are connected by an edge are each
the zero-divisor graph of a commutative semigroup with 0. The graph in Fig. 2 is
also a refinement of the union of two star graphs with centers at vertex a and vertex
b. However, it is not the zero-divisor graph of any commutative semigroup with 0.
The vertices a and f do not satisfy condition (4) of Theorem 3.1 since vertex a is
adjacent to d and vertex f is adjacent to c, but there is no vertex adjacent to both c
and d.

The following theorem gives necessary and sufficient conditions on the semi-
group S for G.S/ to be a refinement of a star graph (cf. [11, Theorem 2.5] for
commutative rings).

Theorem 3.5 ([79, Theorem 1.1]) Let S be commutative semigroup with 0 and
Z.S/ ¤ f0g. Then G.S/ is a refinement of a star graph if and only if either Z.S/ is an
annihilator ideal (and hence a prime ideal) of S or Z.S/ D A[B, where A Š .Z2; �/,
A \ B D f0g, and A, B are ideals of S.

For a vertex c of a graph G, let G�
c be the induced subgraph of G with vertices

V.G�
c / D V.G/ n f u 2 V.G/ j u D c or u is an end vertex adjacent to c g.

Theorem 3.6 ([79, Theorem 2.3]) Let S be a set with a commutative binary
operation and a zero element 0 such that S D f0g [ fcg [ T [ S1 is the disjoint
union of four nonempty subsets. Assume further that Z.S/ D S, whose zero-divisor

Fig. 2 A graph which is a
refinement of the union of
two star graphs with centers
at vertex a and vertex b.
However, it is not the
zero-divisor graph of any
commutative semigroup
with 0

d e f

a b c
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graph G.S/ is a refinement of a star graph with center c such that S1 D V.G�
c / and

G�
c has at least two components. Then the following statements are equivalent.

1. S is a commutative zero-divisor semigroup (i.e., the binary operation is associa-
tive).

2. S21 D f0; cg, T2 � f0; cg, c2 D 0, and ts1 D c for every t 2 T and s1 2 S1.
3. S2 D f0; cg and S3 D f0g.

Recall that a vertex x of a graph G has degree m, denoted by deg.x/ D m, if
jN.x/j D m. For an integer k � 1, let Gk be the induced subgraph of G with vertices
V.Gk/ D f x 2 V.G/ j deg.x/ � k g. For a commutative semigroup S with 0 and an
integer k � 1, let Ik D f x 2 V.G/ j deg.x/ � k g [ f0g. Results in the next two
theorems from [30] were stated for nilpotent semigroups, but their proofs show that
they hold for nil semigroups (i.e, every element is nilpotent).

Theorem 3.7 Let S be a commutative semigroup with 0.

1. ([30, Theorem 4]) Ik is a descending chain of ideals in S.
2. ([30, Corollary 1]) The core of G.S/ together with f0g is an ideal of S whose

zero-divisor graph is the core of G.S/.
3. ([30, Corollary 2]) If S is a nil semigroup, then G.S/k D G.Ik/ for every integer

k � 1.
4. ([30, Corollary 3]) Let G be a graph and assume that Gk is not the zero-divisor

graph of any commutative semigroup with 0 for some integer k � 1. Then G is
not the zero-divisor graph of any commutative nil semigroup.

5. ([30, Corollary 4]) Let G be a graph which is equal to its core, but is not the
zero-divisor graph of any commutative semigroup with 0, and let H be the graph
obtained from G by adding ends to G. Then H is not the zero-divisor graph of
any commutative semigroup with 0.

Sharper results hold when S is a nil semigroup. A well-known special case is for
� .R/ when Z.R/ D nil.R/ (e.g., when R is a finite local ring).

Theorem 3.8 Let S be a commutative semigroup with 0.

1. ([30, Theorem 5]) Assume that S is a nil semigroup. Then

a. diam.G.S// 2 f0; 1; 2g.
b. Every edge in the core of G.S/ is the edge of a triangle in G.S/. In particular,

gr.G.S// 2 f3;1g.
2. ([30, Corollary 5]) If every element of S has finite order and some edge in the

core of G.S/ is the edge of a square, but not a triangle, then S contains a nonzero
idempotent element.

In [35], the authors gave several criteria for a graph G to be a zero-divisor graph in
terms of the number of edges of G and adding or removing edges from a given zero-
divisor graph G.S/. In the next theorem, we are removing edges from Kn (which has
n.n � 1/=2 edges).
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Theorem 3.9 ([35, Theorem 2.5(1)]) Let G be a connected graph with n vertices
and n.n � 1/=2 � p edges. Then G is the zero-divisor graph of a commutative
semigroup with 0 if 0 � p � dn=2eC1 (i.e., if G has at least n.n�1/=2�dn=2e�1
edges).

Theorem 3.10 ([35, Theorem 3.22]) Let G D G.S/ be a zero-divisor graph with
cycles for a commutative semigroup S with 0 .

1. If a is an end adjacent to x in G, then adding another end adjacent to x results in
a zero-divisor graph.

2. Removing an end from G results in a zero-divisor graph.

For a commutative semigroup S with 0, let G�.S/ be the (simple) graph with
vertices the nonzero zero-divisors of S, and distinct vertices x and y are adjacent if
and only if xy ¤ 0 [in [36], 0 was allowed to be a vertex of G�.S/]. As in [36],
a graph G is called admissible if G Š G�.S/ for some commutative zero-divisor
semigroup S. In [36], the authors study G.S/ by studying G�.S/.

Theorem 3.11 ([36, Theorem 2]) Given a connected graph G, let G0 be the graph
obtained by the following procedure: For every edge a � b in G, add a vertex ca;b

and edges a � ca;b, b � ca;b. Then G0 is connected and admissible.

For a graph G, let G be the complement graph of G (i.e., V.G/ D V.G/ and a�b
is an edge in G if and only if a� b is not an edge in G for every two distinct vertices
a; b of G). Thus, G�.S/ D G.S/. The next theorem gives some necessary conditions
on G for G to be admissible.

Theorem 3.12 ([36, Theorem 4], cf. Theorem 3.1) Let G be an admissible
graph.

1. G has at most one nontrivial component, i.e., with more than one vertex.
2. For every connected pair a; b 2 V.G/, d.a; b/ � 3.
3. The induced cycles in G are either 3-cycles or 4-cycles.
4. For every pair a; b of distinct nonadjacent vertices of G, there is a vertex c of G

such that N.a/ [ N.b/ � N.c/.

Let G be a simple connected graph, and let S � V.G/. Then a vertex x of G is
said to bound S if for every y 2 N.x/, we have d.y; t/ � 1 for every t 2 S. The set of
boundary vertices of S is denoted by BG.S/. A set S � V.G/ is said to be bounded
if BG.S/ 6D ;; otherwise, S is said to be unbounded (see [36]).

Theorem 3.13 ([36, Theorem 3 and Corollary (p. 1490)]) Let G be an admissible
graph and a; b 2 V.G/, not necessarily distinct. Then ab 2 BG.fa; bg/ [ f0g. In
particular, if a � b is an edge of G, then BG.fag/ ¤ ; and BG.fa; bg/ ¤ ;.

The following theorem gives some connections between elements in an admissi-
ble graph.
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Theorem 3.14 Let G be an admissible graph. Then

1. ([36, Lemma 1]) If a � b is an edge of G, then d.ab; a/ � 2 and d.ab; b/ � 2.
2. ([36, Proposition 5]) For every a 2 V.G/, a2 2 BG.fag/ [ f0g.
3. ([36, Proposition 6]) If a � b is an edge of G and a2 D b2 D 0, then a and b are

adjacent to a common vertex of G.
4. ([36, Proposition 7]) If a � b is an edge of G and a2 D 0, then ab 62 N.a/.
5. ([36, Proposition 8]) If a � b is an edge of G and a2 D a, then ab 2 N.a/.
6. ([36, Corollary (p. 1495)]) If a � b is an edge of G such that a2 D 0 and b2 D b,

then ab 2 N.b/ n N.a/.

4 The Number of Zero-Divisor Semigroups

Not only is it of interest to know which graphs can be realized as G.S/ for some
commutative semigroup S with 0, but more precisely, what are the choices for
such semigroups S? The case for commutative semigroups S with 0 and G.S/ is
somewhat different than for commutative rings R with 1 ¤ 0 and � .R/. It is well
known that jRj � jZ.R/j2 when Z.R/ ¤ f0g; so (up to isomorphism) there are
only finitely many commutative rings with 1 ¤ 0 that have a given (nonempty)
finite zero-divisor graph. However, for semigroups, one can always adjoin units;
so if there is a commutative semigroup S with 0 and G Š G.S/, then for every
cardinal number n � jSj, there is a commutative semigroup S.n/ with 0 [and
Z.S.n// D Z.S/] such that G Š G.S.n// and jS.n/j D n. Thus, to determine
which commutative semigroups with 0 realize a given graph G, we will restrict
our attention to commutative zero-divisor semigroups [i.e., S D Z.S/].

While it is usually not true that G.S/ Š G.T/ implies that S Š T for commutative
semigroups S and T with 0, we can get better results when we restrict to certain
classes of zero-divisor semigroups. We first consider the case when S is reduced (i.e.,
xn D 0 implies x D 0). The zero-divisor graph of reduced commutative semigroups
with 0 has been studied in [8, 9, 38, 46], and [53]. The next theorem shows that this
case reduces to Boolean semigroups (i.e., x2 D x for every element). Call a monoid
S with 0 a zero-divisor monoid if S n f1g D Z.S/. Special cases of the next theorem
have been proved in [53, Theorem 4.3] for (1) and [51, Theorem 4.2] for (2).

Theorem 4.1 1. ([46, Corollary 1.2]) The following statements are equivalent for
a graph G with at least two vertices.

a. G Š G.S/ for some reduced commutative semigroup S with 0.
b. G Š G.S/ for some commutative Boolean semigroup S with 0.
c. G Š G.S/ for some meet semilattice S.

2. ([8, Theorem 2.1]) Let S and T be commutative Boolean zero-divisor monoids.
Then G.S/ Š G.T/ if and only if S Š T.

We next give several classes of graphs for which one can determine all possible
commutative zero-divisor semigroups with a given graph. However, we will be
content to just give the number (up to isomorphism) of such semigroups rather than
list them all explicitly.
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In [76], the authors gave recursive formulas for the number (up to isomorphism)
of commutative zero-divisor semigroups whose zero-divisor graphs are either Kn or
Kn C 1 (a Kn with an end adjoined) and compute these numbers up to n D 10. For
example, there are (up to isomorphism) 139 commutative zero-divisor semigroups
with zero-divisor graph K10 and 7; 101 with zero-divisor graph K10C 1. We give the
explicit formula for Kn; let p.m; r/ be the number of partitions x1C � � � C xr D m of
the integer m with x1 � x2 � � � � � xr � 1.

Theorem 4.2 ([76, Theorem 2.2]) For every integer n � 1, there are (up to
isomorphism)

1C
nX
r

D 1

n�rX
eD0

p.n � e; r/

commutative zero-divisor semigroups whose zero-divisor graph is Kn.

We next consider star graphs.

Theorem 4.3 ([71]) Let n � 1 be an integer and f .n/ be the number (up to
isomorphism) of commutative semigroups with n elements. Then there are (up to
isomorphism) nC2C2f .n�1/C2f .n/ commutative zero-divisor semigroups whose
zero-divisor graph is K1;n.

Theorem 4.4 ([79, Theorem 2.13])

1. If S is a nilpotent commutative semigroup with G.S/ a star graph, then S4 D f0g.
2. For every cardinal number n � 2, there is a unique (up to isomorphism) nilpotent

commutative semigroup S.n/ such that G.S.n// D K1;n and S.n/3 ¤ f0g.
Theorem 4.5 Let n be an integer.

1. ([79, Theorem 3.6]) For every n � 2, there are (up to isomorphism) n C 2

nilpotent commutative semigroups with 0 whose zero-divisor graph is the star
graph K1; n.

2. ([69, Theorem 2.1]) There are (up to isomorphism) 12 commutative zero-divisor
semigroups whose zero-divisor graph is the star graph K1; 2.

3. ([69, Theorem 2.2]) There is (up to isomorphism) a unique commutative zero-
divisor semigroup whose zero-divisor graph is the path graph P4: a� b� c� d.

4. ([69, Theorem 2.5]) There are (up to isomorphism) 35 commutative zero-divisor
semigroups whose zero-divisor graph is the graph K1; 3.

5. ([69, Theorem 2.7]) There are (up to isomorphism) 31 commutative zero-divisor
semigroups whose zero-divisor graph is the graph in Fig. 3.

By [79, p. 339], the number of commutative zero-divisor semigroups whose zero-
divisor graph is K2 (resp., K3;K4, and K3C 1) is 4 (resp., 7; 12, and 22). Combining
this with Theorem 4.5 gives all commutative zero-divisor semigroups whose zero-
divisor graph has at most four vertices.



The Zero-Divisor Graph of a Commutative Semigroup: A Survey 33

Fig. 3 There are (up to
isomorphism) 31
commutative zero-divisor
semigroups with this
zero-divisor graph

d

a b

c

Fig. 4 F3, i.e., a friendship
graph with jIj D 3

Recall that a graph G is a friendship graph if G is graph-isomorphic to .[IK2/C
K1, for some set I; this graph is denoted by FjIj. For example, Fig. 4 is a friendship
graph with jIj D 3. We call G a fan-shaped graph if G is graph-isomorphic to
Pn [ fcg, where Pn is the path graph on n vertices and c is adjacent to every vertex
of Pn, and denote this graph by F0

n.

Theorem 4.6 ([79, Lemma 3.1]) For every integer n � 2, there are (up to
isomorphism) .nC1/.nC2/

2
commutative zero-divisor semigroups whose zero-divisor

graph is the friendship graph Fn.

Theorem 4.7 ([79, Theorem 3.2]) Let G be the friendship graph Fn together with
m end vertices adjacent to its center, where n � 2, m � 0. Then there are (up
to isomorphism) .nC1/.nC2/.mC1/

2
commutative zero-divisor semigroups whose zero-

divisor graph is the graph G.

The number of fan-shaped graphs F0
n for n � 6 is a special case of the next

theorem (let T D ;, so the number is g.n/). For n D 2 (resp., 3; 4, and 5), the number
(up to isomorphism) of commutative zero-divisor semigroups whose zero-divisor
graph is F0

n is 4 (resp., 12; 47, and 26) (see [68] for n D 4 and [80, Theorem 3.1] for
n D 5).

Theorem 4.8 ([79, Theorem 3.5]) For every integer n � 6 and any finite set T,
let G D .Pn [ T/ C c be the graph with G�

c D Pn, where Pn is the path graph
with n vertices. Then there are (up to isomorphism) .jTj C 1/g.n/ commutative
zero-divisor semigroups whose zero-divisor graph is the graph G, where g.n/ D(
1
2
.2n C 2

n
2 / if n is even

1
2
.2n C 2

nC1
2 / if n is odd:

The next two theorems from [77] concern the complete graph Kn with an end
adjoined to some vertices of Kn.
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Theorem 4.9 Let n be an integer.

1. ([77, Theorem 2.1]) For n � 4, there is (up to isomorphism) a unique
commutative zero-divisor semigroup whose zero-divisor graph is the graph Kn

together with two end vertices.
2. ([77, Theorem 2.2]) For n � 4, there is no commutative semigroup with 0 whose

zero-divisor graph is the graph Kn together with three end vertices.
3. ([77, Proposition 3.1]) There are (up to isomorphism) 20 commutative zero-

divisor semigroups whose zero-divisor is the graph K3 together with an end
vertex.

Theorem 4.10 ([77, Theorem 3.2]) For integers n and k with 1 � k � n, let Mn;k D
Kn [ fx1; : : : ; xkg be the complete graph Kn with vertices fa1; : : : ; ang together with
k end vertices fx1; : : : ; xkg, where ai is adjacent to xi for every 1 � i � k.

1. For every integer n � 4, there is a unique commutative zero-divisor semigroup
whose zero-divisor graph is either M3;3 or Mn;2 .

2. ([30, Theorem 3(1)]) For every integer n � 1, there are multiple commutative
zero-divisor semigroups whose zero-divisor graph is either Mn;0 (i.e., Kn) or Mn;1.

3. For every integer n � 4 and k � 3, there is no commutative zero-divisor
semigroup whose zero-divisor graph is Mn;k.

4. There are (up to isomorphism) three commutative zero-divisor semigroups whose
zero-divisor graph is M3;2.

For an integer n � 4, let Tn.2; 2/ D Kn [ fx1; x2g be the complete graph Kn with
vertices Mn D fa1; : : : ; ang together with the edges: x1 � a1, x1 � a2, x2 � a3, and
x2� a4. For example, Fig. 5 is the graph T4.2; 2/. The following two theorems from
[41] give the number (up to isomorphism) of commutative zero-divisor semigroups
with zero-divisor graph Tn.2; 2/ for every integer n � 4.

Theorem 4.11 1. ([41, Lemma 2.1]) There is no commutative zero-divisor semi-
group whose zero-divisor graph is T4.2; 2/.

2. ([41, Theorem 2.2]) There are (up to isomorphism) 18 commutative zero-divisor
semigroups whose zero-divisor graph is T5.2; 2/.

Theorem 4.12 ([41, Theorem 2.3]) Let n � 6 be an integer and Mn.2; 2/ D
fa1; : : : ; ang [ f0; x1; x2g. Then Mn.2; 2/ is a commutative zero-divisor semigroup
whose zero-divisor graph is Tn.2; 2/ if and only if the following conditions hold.

Fig. 5 The graph T4.2; 2/

a1

x1 x2

a3

a2 a4

T4 (2,2)
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1. aix1 D 0 (i D 1; 2), ajx2 D 0 (j D 3; 4), x2i D xi (i D 1; 2), aiaj D 0 for every
i 6D j, a2i 2 f0; a1; a2g (i D 1; 2), and a2j 2 f0; a3; a4g (j D 3; 4).

2. x1x2 2 fa5; : : : ; ang. If x1x2 D at, then atxi D at (i D 1; 2), a2t D at and a2r D 0

for every r � 5 and r 6D t.
3. arx1 2 fa3; a4g for every r 6D 1; 2; t. If arx1 D a3.a4/ for r 6D 3.4/, then a3x1 D

a3 (a4x1 D a4) and a32 D 0 (a42 D 0/). In particular, if a4x1 D a3 (a3x1 D a4),
then a24 D 0 (a23 D 0).

4. arx2 2 fa1; a2g for every r 6D 3; 4; t. If arx2 D a1.a2/ for r 6D 1.2/, then a1x2 D
a1 (a2x2 D a2) and a21 D 0 (a22 D 0). In particular, if a2x1 D a1 (a1x2 D a2),
then a22 D 0 (a21 D 0).

Moreover, if Pn is the number (up to isomorphism) of commutative zero-
divisor semigroups with zero-divisor graph Tn.2; 2/, then

Pn D

8̂̂̂
<̂
ˆ̂̂̂:

1
48
.n3 � 6n2 C 89nC 204/ if n D 4mC 1

1
48
.n3 C n2 C 64n � 12/ if n D 4mC 2

1
48
.n3 � 3n2 C 71nC 219/ if n D 4mC 3

1
48
.n3 � 6n2 C 80nC 144/ if n D 4m:

5 Other Results

We conclude this survey article by referencing a few other results on zero-divisor
graphs. Many topics related to associating graphs to algebraic systems have been left
untouched; the interested reader may consult the seven survey articles mentioned in
the introduction, unreferenced papers in the bibliography, and MathSciNet for many
more relevant articles.

Remark 5.1 Some more results.

1. In [27, 62], and [74], the authors studied directed zero-divisor graphs of a
noncommutative semigroup with 0.

2. It was shown in [51] that a graph G with more than two vertices has a unique
corresponding commutative zero-divisor semigroup if G is a zero-divisor graph
of some Boolean ring.

3. In [9], the authors determined the monoids RE for which �E.R/ D G.RE/ is a
star graph.

4. For other types of graphs associated to semigroups, see, for example, [1, 5, 6,
25, 32], and [81].

5. The authors in [35, 52], and [54] studied commutative zero-divisor semigroups
whose zero-divisor graphs are complete r-partite graphs.

6. In [70], the authors determined the number (up to isomorphism) of commutative
rings and semigroups whose zero-divisor graphs are regular polyhedra.
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7. The authors in [78] studied sub-semigroups determined by the zero-divisor
graph.

8. The authors in [15] studied minimal paths in commutating graphs of semi-
groups.

9. For graphs associated to groups, see, for example, [14, 22], and [50].
10. For graphs of posets, lattices, semilattices, or Boolean monoids, see, for

example, [8, 39, 40, 44, 46, 48], and [53].
11. The authors in [27] (resp., [28]) studied the zero-divisor graph (resp., annihila-

tor graph) of near rings.
12. The author in [47] studied the zero-divisor graph of a groupoid.
13. In [45, 66], and [72], the authors gave algorithms for determining if a given

graph can be realized as the zero-divisor graph of a commutative ring with
1 ¤ 0.

14. In [33, 40, 44, 53, 54], and [60], the authors studied colorings of commutative
semigroups with 0.

References

1. M. Afkhami, K. Khashyarmanesh, S.M. Sakhdari, The annihilator graph of a commutative
semigroup. J. Algebra Appl. 14, 1550015, 14 pp. (2015)

2. D.F. Anderson, A. Badawi, The total graph of a commutative ring. J. Algebra 320, 2706–2719
(2008)

3. D.F. Anderson, A. Badawi, The total graph of a commutative ring without the zero element. J.
Algebra Appl. 12, 1250074, 18 pp. (2012)

4. D.F. Anderson, A. Badawi, The generalized total graph of a commutative ring. J. Algebra Appl.
12, 1250212, 18 pp. (2013)

5. D.D. Anderson, V. Camillo, Annihilator-semigroup rings. Tamkang J. Math. 34, 223–229
(2003)

6. D.D. Anderson, V. Camillo, Annihilator-semigroups and rings. Houston J. Math. 34, 985–996
(2008)

7. D.D. Anderson, M. Naseer, Beck’s coloring of a commutative ring. J. Algebra 159, 500–514
(1993)

8. D.F. Anderson, J.D. LaGrange, Commutative Boolean monoids, reduced rings, and the
compressed zero-divisor graph. J. Pure Appl. Algebra 216, 1626–1636 (2012)

9. D.F. Anderson, J.D. LaGrange, Some remarks on the compressed zero-divisor graph. J. Algebra
447, 297–321 (2016)

10. D.F. Anderson, E.F. Lewis, A general theory of zero-divisor graphs over a commutative ring.
Int. Electron. J. Algebra 20, 111–135 (2016)

11. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring. J. Algebra 217,
434–447 (1999)

12. D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, The zero-divisor graph of a commutative
ring II, in Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999). Lecture
Notes in Pure and Applied Mathematics, vol. 220 (Dekker, New York, 2001), pp. 61–72

13. D.F. Anderson, M.C. Axtell, J.A. Stickles, Zero-divisor graphs in commutative rings, in
Commutative Algebra, Noetherian and Non-Noetherian Perspectives, ed. by M. Fontana et al.
(Springer, New York, 2010), pp. 23–45

14. D.F. Anderson, J. Fasteen, J.D. LaGrange, The subgroup graph of a group. Arab. J. Math. 1,
17–27 (2012)



The Zero-Divisor Graph of a Commutative Semigroup: A Survey 37

15. J. Araújo, M. Kinyonc, J. Konieczny, Minimal paths in the commuting graphs of semigroups.
Eur. J. Comb. 32, 178–197 (2011)

16. A. Ashraf, H.R. Miamani, M.R. Pouranki, S. Yassemi, Unit graphs associated with rings.
Commun. Algebra 38, 2851–2871 (2010)

17. M. Axtell, N. Baeth, J. Stickles, Survey article: graphical representations of fractorization in
commutative rings. Rocky Mountain J. Math. 43, 1–36 (2013)

18. A. Badawi, On the total graph of a ring and its related graphs: a survey, in Commutative
Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial
Functions, ed. by M. Fontana et al. (Springer Science and Business Media, New York, 2014),
pp. 39–54

19. A. Badawi, On the annihilator graph of a commutative ring. Commun. Algebra 42, 108–121
(2014)

20. A. Badawi, On the dot product graph of a commutative ring. Commun. Algebra 43, 43–50
(2015)

21. Z. Barati, K. Khashyarmanesh, F. Mohammadi, K. Nafar, On the associated graphs to a
commutative ring. J. Algebra Appl. 11, 1250037, 17 pp. (2012)

22. M. Baziar, E. Momtahan, S. Safaeeyan, N. Ranjebar, Zero-divisor graph of abelian groups. J.
Algebra Appl. 13, 1450007, 13 pp. (2014)

23. I. Beck, Coloring of commutative rings. J. Algebra 116, 208–226 (1988)
24. M. Behboodi, Z. Rakeei, The annihilating-ideal graph of a commutative ring I. J. Algebra Appl.

10, 727–739 (2011)
25. D. Bennis, J. Mikram, F. Taraza, On the extended zero divisor graph of commutative rings.

Turk. J. Math. 40, 376–399 (2016)
26. B. Bollaboás, Graph Theory. An Introductory Course (Springer, New York, 1979)
27. G.A. Canon, K.M. Neuberg, S.P. Redmond, Zero-divisor graphs of nearrings and semigroups,

in Nearrings and Nearfields, ed. by H. Kiechle et al. (Springer, Dordrecht, 2005), pp. 189–200
28. T.T. Chelvam, S. Rammurthy, On the annihilator graph of near rings. Palest. J. Math. 5(special

issue 1), 100–107 (2016)
29. J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, S. Spiroff, On zero divisor graphs, in

Progress in Commutative Algebra II: Closures, Finiteness and Factorization, ed. by C.
Francisco et al. (de Gruyter, Berlin, 2012), pp. 241–299

30. F. DeMeyer, L. DeMeyer, Zero divisor graphs of semigroups. J. Algebra 283, 190–198 (2005)
31. F. DeMeyer, K. Schneider, Automorphisms and zero divisor graphs of commutative rings, in

Commutative Rings (Nova Science Publications, Hauppauge, NY, 2002), pp. 25–37
32. L. DeMeyer, A. Schneider, An annihilating-ideal graph of commutative semigroups, preprint

(2016)
33. F.R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semi-

group. Semigroup Forum 65, 206–214 (2002)
34. L. DeMeyer, M. D’Sa, I. Epstein, A. Geiser, K. Smith, Semigroups and the zero divisor graph.

Bull. Inst. Comb. Appl. 57, 60–70 (2009)
35. L. DeMeyer, L. Greve, A. Sabbaghi, J. Wang, The zero-divisor graph associated to a semigroup.

Commun. Algebra 38, 3370–3391 (2010)
36. L. DeMeyer, Y. Jiang, C. Loszewski, E. Purdy, Classification of commutative zero-divisor

semigroup graphs. Rocky Mountain J. Math. 40, 1481–1503 (2010)
37. L. DeMeyer, R. Hines, A. Vermeire, A homology theory of graphs, preprint (2016)
38. N. Epstein, P. Nasehpour, Zero-divisor graphs of nilpotent-free semigroups. J. Algebraic

Combin. 37, 523–543 (2013)
39. E. Estaji, K. Khashyarmanesh, The zero-divisor graph of a lattice. Results Math. 61, 1–11

(2012)
40. R. Halaš, M. Jukl, On Beck’s coloring of posets. Discrete Math. 309, 4584–4589 (2009)
41. H. Hou, R. Gu, The zero-divisor semigroups determined by graphs Tn.2; 2/. Southeast Asian

Bull. Math. 36, 511–518 (2012)
42. J.M. Howie, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995)



38 D.F. Anderson and A. Badawi

43. K. Khashyarmanesh, M.R. Khorsandi, A generalization of the unit and unitary Cayley graphs
of a commutative ring. Acta Math. Hungar. 137, 242–253 (2012)

44. H. Kulosman, A. Miller, Zero-divisor graphs of some special semigroups. Far East J. Math.
Sci. (FJMS) 57, 63–90 (2011)

45. J.D. LaGrange, On realizing zero-divisor graphs. Commun. Algebra 36, 4509–4520 (2008)
46. J.D. LaGrange, Annihilators in zero-divisor graphs of semilattices and reduced commutative

semigroups. J. Pure Appl. Algebra 220, 2955–2968 (2016)
47. J.D. LaGrange, The x-divisor pseudographs of a commutative groupoid, preprint (2016)
48. J.D. LaGrange, K.A. Roy, Poset graphs and the lattice of graph annihilators. Discrete Math.

313, 1053–1062 (2013)
49. Q. Liu, T.S. Wu, M. Ye, A construction of commutative nilpotent semigroups. Bull. Korean

Math. Soc. 50, 801–809 (2013)
50. D.C. Lu, W.T. Tong, The zero-divisor graphs of abelian regular rings. Northeast Math. J. 20,

339–348 (2004)
51. D.C. Lu, T.S. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods.

Commun. Algebra 35, 3855–3864 (2007)
52. D.C. Lu, T.S. Wu, On bipartite zero-divisor graphs. Discrete Math. 309, 755–762 (2009)
53. D.C. Lu, T.S. Wu, The zero-divisor graphs of posets and an application to semigroups. Graphs

Comb. 26, 793–804 (2010)
54. H.R. Maimani, S. Yassemi, On the zero-divisor graphs of commutative semigroups. Houston

J. Math. 37, 733–740 (2011)
55. H.R. Maimani, M. Salimi, A. Sattari, S. Yassemi, Comaximal graph of commutative rings. J.

Algebra 319, 1801–1808 (2008)
56. H.R. Maimani, M.R. Pouranki, A. Tehranian, S. Yassemi, Graphs attached to rings revisited.

Arab. J. Sci. Eng. 36, 997–1011 (2011)
57. S.B. Mulay, Cycles and symmetries of zero-divisors. Commun. Algebra 30, 3533–3558 (2002)
58. K. Nazzal, Total graphs associated to a commutative ring. Palest. J. Math. (PJM) 5(Special 1),

108–126 (2016)
59. R. Nikandish, M.J. Nikmehr, M. Bakhtyiari, Coloring of the annihilator graph of a commutative

ring. J. Algebra Appl. 15, 1650124, 13 pp. (2016)
60. S.K. Nimbhorkar, M.P. Wasadikar, L. DeMeyer, Coloring of meet-semilattices. Ars Comb. 84,

97–104 (2007)
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